HOWTO

Equip Your CA With
HSM For <50 Euros

With the recent breaches of Certificate Authorities (Comodo,
Diginotar) | wanted to take a closer look at the security
of my own Certificate Authority (CA). This CA is used for
identification and authentication of servers, clients and

users in my home network.

What you will learn...
« How to use smart cards to store private keys
« The use of OpenSSL with a different crypto provider

What you should know...

+ Your way around a FreeBSD system

+ The basics of a PKI

« Why you need a Certificate Authority

in text files on the file system. Access to the disk

will reveal the keys. An attacker can make a copy
and start issuing certificates outside my control. The
primary design requirement is therefore that private keys
will never be accessible in plain text.

T he keys for signing certificates are typically stored

Hardware Security Module

Enter HSM, hardware designed to keep the private key
private. They come in various forms, from an appliance
/ PCI card to a USB token or smart card. PCI cards are
typically encased in metal with features like automatic key
deletion upon physical tampering. They are basically a
dedicated computer running HSM software and using the
PCI bus for interfacing with the host computer. Appliances
are typically these PCI cards in an enclosure providing
networking and rudimentary user control. HSMs can also
have the form of a single chip. These do not have their
own power supply (for deleting keys), but are still a small
computer running HSM software. They can be embedded
on smart cards, in USB tokens or integrated in other
systems like the TPM chip on your motherboard.

Design Choices

For my HSM | decided to use smart cards, because they
are cheap, readily available and easy to experiment with.
The computer hardware is generic FreeBSD supported

platform (i386 in my case, as | am working on putting it
on an ALIX / NanoBSD installation). Attached is a Feitian
SCR310 smart card reader (ftsafe-r310) and a Feitian PKI
card (FTCOS / PK-01C). This reader is cheap, but any
supported reader is fine (see http:/pcsclite.alioth.debian.
org/ccid/section.html for the complete list). This card was
primarily chosen for its price and availability. It has lots of
storage memory available (64k), but a limitation of 2048
bits for RSA keysize. Please do your own research on the
types of readers and cards to fit your requirements.

For my production system, | will move to a Gemalto
USB TR reader. It has an adapter so it can be mounted in
a 3.5” floppy bay.

Figure 1. Cards

11/2011

http://pcsclite.alioth.debian.org/ccid/section.html
http://pcsclite.alioth.debian.org/ccid/section.html

Equip Your CA With HSM For <50 Euros

The software is a clean FreeBSD 8.2 with the following
ports:

* /usr/ports/devel/libccid — interface for USB and serial
smart card readers

* /usr/ports/security/opensc — t00ls for smart card mana-
gment (in PC/SC mode)

® /usr/ports/security/engine-pkcsll — engine for PKCS11
support in OpenSSL

* Jusr/ports/security/openssl — t00Ils for certificate mana-
gement (in this case)

Due to the many, many dependencies, it will take some
time to install. All default settings for the ports are fine.

There is a number of different CA designs possible.
From very flat (the root CA issues all certificates directly)
to very hierarchical (various sub and sub-sub CA’s issue
certificates on behalf of the root CA). My design has one
root CA with a sub CA per functional area. This is done
for security reasons. First of all, the root CA only has
to sign the sub CA’s. The use and exposure of the root
CA’s private key is therefore very limited. Next to that,
the server sub CA never issues client certificates, so the
VPN concentrator has to trust only the clients sub CA
when validating certificates. Client certificates issued
by the (possibly hacked) server- or user sub CA are not
accepted.

Testing The Setup

After the installation of the software, it is time to plugin the
reader and test the setup. Insert the card in the reader
and run:

opensc-tool --list-readers

Detected readers (pcsc)

Figure 2. CA-design

www.bsdmag.org

Nr. Card Features Name

0 Yes Feitian SCR310 00 00

The reader is recognized by the driver. Let’s initialize the
card by formatting it with a PKCS15 structure. PKCS15
is a cryptographic token information format standard
originally designed by RSA. ISO 7816-15 now manages
the card-related parts of this standard.

pkcsl5-init --erase-card

pkcsl5-init --create-pkcsl5 \
--profile pkcsl5+onepin \
--auth-id 01 \
--pin 0000 \
-—puk 123456 \
--label ,ewak.net PKI”

This specific card supports only one user-PIN, so the
pkcs15+onepin profile is used. More advanced cards can
offer more users and role separation.

The PIN for the user (auth-id 01) is set to 0000. If you
want to reset the PIN, you will need the PUK, which is set
to 123456. The label is just a name to identify the card.

The card now has a PKCS15 structure and is able to
store private keys and their certificates.

Listing 1. Formatting the card

pkcsl5-init --verbose \
--store-private-key ewak.net Sub CA servers.pl2 \
--format pkcsl2 \
--auth-id 01 \

-—cert-label "ewak.net Sub CA servers"

Using reader with a card: Feitian SCR310 00 00
Connecting to card in reader Feitian SCR310 00 00...
Using card driver entersafe.
Found ewak.net PKI
About to store private key.
Importing 1 certificates:
0: /C=NL
/ST=GLD
/L=T******e
/O=ewak.net
/OU=Certificate Services
/CN=ewak.net Sub CA servers
/emailAddress=certificate.services@ewak.net
User PIN [User PIN] required.
Please enter User PIN [User PIN]:

MAGAZINE

BSD |

HOWTO

Listing 2. Contents of the card

pkcsl5-tool --dump

Using reader with a card: Feitian SCR310 00 00
PKCS#15 Card [ewak.net PKI]:

Version

Serial number

0
3021303609260511

Manufacturer ID: EnterSafe

Last update
Flags

PIN [User PIN

Object Flags
1D
Flags

Length

Pad char
Reference
Type
Path

Private RSA Key

Object Flags

20110925214004z7
: EID compliant

0x3], private, modifiable

01

[0x32], local, initialized,
needs-padding
: min_len:4, max len:16, stored
len:16

0x00

1
: ascii-numeric

3£005015

[Private Key]

[0x3], private, modifiable

Usage 0xC], sign, signRecover

Access Flags [0x0]

ModLength 2048

Key ref 1 (0x1)

Native : yes

Path 3£005015

Auth ID 01

ID 53f70c3eabbe%aef27d959¢c134d8ebe
£77322786

GUID {53£70c3e-ab5be-9aef-27d9-

X.509 Certificate

Object Flags
Authority
Path

ID

GUID

Encoded serial

59c134d8ebef}

[ewak.net Sub CA servers]
0x2], modifiable
: no
3f0050153100
53£70c3eabbe%aef27d959c134d8ebe
£77322786
{53£70c3e-abbe-9%aef-27d9-
59c134d8ebef}
02 01 02

Importing Keys

It is possible to have the card generate the private and
public keys, so the private key will never be available in
plain text. This is the most secure option, but losing the
card will also make the keys unrecoverable.

Because | already have a CA in place, | started with
importing the existing keys. Generating the keys on
the card will be discussed at the end of this article.
Importing the key material (in PEM or PKCS12 format) is
straightforward (Listing 1).

The user PIN for auth-id 01 is defined during the
initialization of the card, oooo in this article. It can also be

Listing 3. Finding the card slot

pkcsll-tool --module /usr/local/lib/opensc-pkcsll.so

--list-slots

Available slots:

Slot 0 (Oxffffffff): Virtual hotplug slot
(empty)

Slot 1 (0x1l): Feitian SCR310 00 00
token label: ewak.net PKI (User PIN)
token manuf: EnterSafe
token model: PKCS#15
token flags: rng, login required, PIN

initialized, token initialized

serial num 3021303609260511

Listing 4. Loading the engine

openssl
OpenSSL> engine dynamic \
-pre SO PATH:/usr/local/lib/engines/engine pkcsll.so
\
-pre ID:pkcsll \
-pre LIST ADD:1 \
-pre LOAD \
-pre MODULE PATH:/usr/local/lib/opensc-pkcsll.so

(dynamic) Dynamic engine loading support

[Success]: SO_PATH:/usr/lib/engines/engine pkcsll.so

[Success]: ID:pkcsll

[Success]: LIST ADD:1

[Success]: LOAD

[Success]: MODULE PATH:/usr/local/lib/opensc-
pkcsll.so

Loaded: (pkcsll) pkcsll engine

26‘

MAGAZINE

BSD

11/2011

Equip Your CA With HSM For <50 Euros

supplied to the pkcs15-init tool by adding the --pin 0000
option. Now let’s see what is on the card (Listing 2).

The import was successful. The info for the PIN, the
private key and the certificate are displayed. Record
the ID of the private key, as we will need it later to tell
OpenSSL which signing key to use. A shorter command
for retrieving this ID is pkcsis-tool --1ist-keys. More keys
can be added to the card. My card has three keys for
signing server, client and user certificates.

OpenSSL and PKCS11
OpenSSL can be instructed to use an external crypto
provider for generating and storing key material using

Listing 5. openssl.cnf

openssl_conf = openssl_init
[openss]l init]
engines = engine section

[engine section]

[pkcsll section]

engine id = pkesll

dynamic_path = /usr/local/lib/engines/engine pkcsll.so
MODULE PATH = /usr/local/lib/opensc-pkcsll.so

init = 1
Listing 6. Signing the certificate

openssl ca -config /etc/ssl/openssl.cnf \
-engine pkcsll \
-keyform engine \
~keyfile 1:53f70c3ea5be%aef27d959c134d8ebef77322786 \
-cert ewak.net Sub CA servers.crt \

-in cert.csr -out cert.pem

Using configuration from /etc/ssl/openssl.cnf

engine "pkcsll" set.

PKCS#11 token PIN:

Check that the request matches the signature

Signature ok

Certificate Details:

-snip- OpenSSL output omitted -snip-

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit?
[y/n]y

Write out database with 1 new entries

Data Base Updated

the PKCS11 API, also known as Cryptoki. When using
OpenSSL, we can specify keys on the smart card instead
of a keyfile on the disk. To do this, we need the card’s
slot and the key’s ID. The ID we found using the pxcsis-
tool -list-keys cOmmand. The slot can be found with the
pkcs11-tool command (Listing 3).

Slot 1 is our card reader with the correct smart card
(ewak.net PKI) inserted.

Now start an OpenSSL prompt and load the PKCS11
engine: Listing 4.

The engine is loaded and can be used by specifying it in
OpenSSL commands with the following parameters:

-engine pkcsll \
-keyform engine \
-key slot 1l-key 53f70c3eabSbe%aef27d959c134d8ebef77322786

For example:

OpenSSL> req -new -engine pkcsll -keyform engine \
-key slot l-key d893afddc82b28fb539e975b2a3el8efc2f3c474 \

-out cert.csr —-text

(This will create a certificate signing request from the
public key with the id shown.) The use of PKCS11 can
be set in the OpenSSL configuration file by adding the
following lines to your /path/to/openssi.cne configuration
file (Listing 5). All OpenSSL commands can now be run
using the PKCS11 engine by specifying:

Listing 7. Contents of the card

pkcsl5-tool --list-keys
Using reader with a card: Feitian SCR310 00 00
Private RSA Key [Private Key]

Object Flags [0x3], private, modifiable
[0x4],

[0x1D],

Usage sign

Access Flags sensitive,

alwaysSensitive, neverExtract,

local

ModLength : 1024

Key ref : 1 (0x1)

Native : yes

Path : 3£005015

Auth ID : 01

D : d893afddc82b28£fb539e975b2a3el8e
fc2£3c474

GUID {d893afdd-c82b-28£fb-539%e-
975b2a3el8ef}

www.bsdmag.org

MAGAZINE

BSD |,

HOWTO

-config /path/to/openssl.cnf -engine pkcsll \
-keyform engine -key slot <slot>-id <id>

at the command line.

Signing Keys

The imported keys will be used for signing certificates.
The OpenSSL command is not that much different from
all available howto’s on setting up a self-signed CA
(Listing 6).

The signing request cert.csr is signed with the specified
private key on the smart card. The signed certificate
is stored in cert.pem. The certificate of the signing
private key is stored in a local file called ewak.net sub ca_
servers.crt. It is also stored on the smart card, but since it
is the public key and meant to be public, storing it on the
local file system is more convenient and poses no security
risk.

Note the different notation of the parameter for the key
selection —xeyfile <siot>:<key id>. OpenSSL will otherwise
look for the keyfile specified in your openssl.cnf and fail to
load the key.

Listing 8. Creating the csr

openssl req -new \
-engine pkcsll \
-keyform engine \
-key slot 1l-key d893afddc82b28fb539e975b2a3el8efc2f
3c474 \

-out cert.csr -text

PKCS#11 token PIN:

You are about to be asked to enter information that
will be

incorporated into your certificate request.

-snip- OpenSSL output omitted -snip-

Listing 9. Storing the certificate

pkcsl5-init --store-certificate cert.pem -—-auth-id
01 \
--id d893afddc82b28fb539e975b2a3el8efc2£3c474

Using reader with a card: Feitian SCR310 00 00
User PIN [User PIN] required.

Please enter User PIN [User PIN]:

MAGAZINE

BSD

28‘

Generating Keys

If you do not have an existing PKI or are willing to change
its private keys, you can have the keys generated by and
stored on the smart card. The keys will be generated
with the true random number generator on the card and
will never have touched you computer’s memory or file
system. This is done with the pkcs15-init tool.

pkcsl5-init --generate-key rsa/1024 --auth-id 01

Using reader with a card: Feitian SCR310 00 00
User PIN [User PIN] required.
Please enter User PIN [User PIN]:

Both private and public keys are stored on the smart
card. The keys are RSA keys of 1024 bits length. This
public key can now be used for generating a certificate
signing request. First we need the key ID (Listing 7).
Create a signing request from the public key (Listing 8).

The cert.csr file can now be signed as shown before.
The signed certificate can then be stored on the card
using the pkcs15-init tool (Listing 9).

Conclusion

Smart cards can provide a low-cost and relative secure
storage for private key material. This article focused on
the use of smart cards in a CA environment. It did not
focus on storing and using a user certificate for email
signing, storing and using a client certificate for OpenVPN
or storing and using SSH keys. These are all interesting
options | will research further.

ERWIN KOOI

Erwin Kooi is an Information Security Manager for a large grid
operator. He started with FreeBSD 4.5 and is an avid fan ever
since.

11/2011

	Cover

	Dear Readers
	Contents
	PC-BSD 9 Turns a New
Page
	A Beginner’s
Guide to PF
	Creating Your Own PBI
Repository
	Speed Daemons
	A GIS Strategy
For Web-Enabled Business
	Equip Your CA With
HSM For <50 Euros
	Terminals Served Up
BSD Style
	OpenBSD KernelMemory Pools:
Monitoring Usage With Systat
	FreeBSD 8.2 Against
Ubuntu Server 11.10
	EuroBSDcon 2011 From
Organizers Perspective
	The Passing of Steve Jobs:
Not Just Apple’s Loss

