Everything you always wanted to know about cryptography but were afraid to ask...

Content

- What is cryptography?
- Classical ciphers
- Modern ciphers
- Stream ciphers
- Block ciphers
- Symmetric (DES, AES)
- Asymmetric (RSA, ECC)
- Future ciphers
- Post-quantum cryptography
- Disclaimer: some extremely complicated stuff is simplified to be more readable.

What is cryptography?

What is cryptography?

- Cryptography is used to scramble a message and allow descrambling if a few (secret) facts are known on the scrambling method (so no base64!)
- Words I'll be using a lot:
- Plain text original message
- Key codeword used for encryption
- Cipher
- Cipher text algorithm used for encryption or crypto system
encrypted message
- Cryptology
- Cryptography (design ciphers)

Cryptanalysis (break ciphers)

A typical scenario

Classical ciphers

Classical ciphers

- Cryptography is from all ages and can have many forms
- This is a very secret message
- Түıб σ а $\sigma \varepsilon \rho \psi ~ \sigma \varepsilon \chi \rho \varepsilon \tau ~ \mu \varepsilon \sigma \sigma \alpha \gamma \varepsilon ~$

Classical ciphers - mono-alphabet substitution

- Replace the character by another character (of the same alphabet).
- Number of possible keys $=26$! $(26 \cdot 25 \cdot 24 \cdot \ldots \cdot 1)$.
- Number of useful keys much lower.
- Language statistical properties fully present:
- Most occuring characters in english are the e, t, a, o, n, I.
" Certain characters often appear together ("the", "qu").

Classical ciphers - mono-alphabet substitution

- Caesar cipher
- Shift the alphabet by a number of n characters.
- If plain text and cypher are known, the key can be deduced (even with one character).
- Number of possible keys?

Classical ciphers - mono-alphabet substitution

- Caesar cipher

```
a b c d e f g h i j k l m n o p q r s t u v w x y z
m n o p q r s t u v w x y z a b c d e f g h i j k l
n = 13 (aka: rot13)
```

Meet me after the toga party
Yqqf yq mrfqd ftq fasm bmdfk

Classical ciphers - mono-alphabet substitution

- Caesar cipher - A small test

```
a b c d e f g h i j k l m n o p q r s t u v w x y z
d e f g h i j k l m n o p q r s t u v w x y z a b c
n=3 (actual number used by Julius Caesar)
attack the castle at dawn
dwwdfn wkh fdvwoh dw gdzq
```


Classical ciphers - poly-alphabet substitution

- First described by monk Trittenheim in 1518
- Use alphabet matrix to mix plain text with key
- Language statistical properties hardly present (different shifts are used for different characters, shift is determined by key character)
- If plain text and cipher are known, the key can be deduced

Classical ciphers - poly-alphabet substitution

- Vigenére cipher

$$
\begin{aligned}
& \text { a b c d e f gh i j k l m n o p q r s t u v w x y z } \\
& \text { b c d e f g h i j k l m n o p q r s t u v w x y z a } \\
& \text { c d e f g h i j k l m n o p q r s t u v w x y z a b } \\
& \text { d e f g h i j k l m n o p q r s t u v w } \\
& \text { e f g } \\
& \text {. d ef } \mathrm{f} \text { h i } \mathrm{j} k \mathrm{l} \mathrm{~m} \text { n o p q r stuvw }
\end{aligned}
$$

Classical ciphers - poly-alphabet substitution

- Vigenére cipher

```
attack the castle at dawn plain text
secret sec retsec re tsec
sxvrgd llg tellpg rx wsap
key
cipher
```

$C=((P+K)-1) \bmod 26$ and $P=((C-K)+1) \bmod 26$
$K=((C-P)+1) \bmod 26$

Classical ciphers - Enigma

- Mythical device...
- Invention atributed to Van Hengel and Sprengler in 1915
- Started commercial, addopted by Germans in WWII
- Poly-alphabet substitution
- Cryptanalysis by Polish mathematicians, improved by British cryptographers
- Brute force via Bombe with known plain text ("crib")

Modern ciphers

Modern ciphers

- Huge demand for faster algorithms
- Claude Shannon wrote some of the pivotal papers on modern cryptology theory in 1949
- Communication Theory of Secrecy Systems
- Prediction and Entropy of printed English
- In these he developed the concepts of

- entropy of a message
- redundancy in a language
- theories about how much information is needed to break a cipher1
- defined concepts of computationally secure vs unconditionally secure

Modern ciphers - stream ciphers

- Stream of characters encrypted, such that the encryption is not the same for each character in the stream ("memory" effect).
- Useful for
- real-time data transmission
- unpredictable amount of characters.

Modern ciphers - stream ciphers - algorithms

- Generator is often Linear Feedback Shift Register (LFSR)
- Key output depending on previous key output, not on message

$$
\begin{array}{r}
\mathrm{K} \stackrel{\mathrm{~s}_{7}\left|\mathrm{~s}_{6}\right| \mathrm{s}_{5}\left|\mathrm{~s}_{4}\right| \mathrm{s}_{3}\left|s_{2}\right| s_{1} \mid \mathrm{s}_{0}}{\oplus} \\
f_{(\mathrm{x})}=\mathrm{X}^{7}+\mathrm{X}^{4}+\mathrm{X}^{0}
\end{array}
$$

Modern ciphers - stream ciphers - algorithms

- GSM (A5)
- Bluetooth

Wifi (WEP)

- Mifare classic (Crypto1)

Figure 1: The A5/1 stream cipher.

Modern ciphers - block ciphers

- Blocks of characters are encrypted

Modern ciphers - block ciphers

- Symmetric (both sides have the same key)
- Useful for large amounts of text
- Requires a lot of relatively simpel computations (can easily be implemented in hardware)
- Limitation that the key must already be known by the sender and receiver
- Asymmetric (both sides have different but related keys)
- Useful for symmetric key exchange
- Useful for identity proof
- Requires a lot of complex computations
- Limitation that the message m_{a} must be smaller than the n_{b}

Modern ciphers - symmetric block ciphers - DES

Data Encryption Standard

- Originally proposed by IBM in 1974 to call by NBS (with 112 bits key)
- Derived from IBM's "LUCIFER" (Horst Feistel, Walter Tuchman)
- US Export restrictions
- Criticism by Diffie \& Hellman in 1975: Key too short (only 56 bits in DES)

Modern ciphers - symmetric block ciphers - DES

- Feistel cipher
- L_{x} and $R_{x} 32$ bits
- $K_{x} 48$ bits round key derived from 56 bits key

Modern ciphers - symmetric block ciphers - DES

- Expand 32 bits to 48 bits
- Add 48 bits round key
- Through S-boxes
- Permutation (shuffle)

Modern ciphers - symmetric block ciphers - DES

- Expand 32 bits to 48 bits

Modern ciphers - symmetric block ciphers - DES

- S-Boxes (substitution)
- Content carefully chosen!
- Changing one input bit results in changing of approximately half the output bits
- NSA controversy

Modern ciphers - symmetric block ciphers - DES

- P-boxes (permutation)

Modern ciphers - symmetric block ciphers - DES

- Feistel cipher

Message block 64 bits

Modern ciphers - symmetric block ciphers - AES

- Call by NIST in 1997
- DES over 20 years old
- Key of 56 bits does not offer an acceptable level of security for some applications
- 3DES relatively slow
- Winning algorithm RIJNDAEL (V. Rijmen, J. Daemen (B))
- 128, 192 or 256 bits key

Modern ciphers - symmetric block ciphers - AES

- DES uses 64 consequetive bits

- AES uses a 4×4 byte matrix

D_{0}	D_{1}	D_{2}	D_{3}
D_{4}	D_{5}	D_{6}	D_{7}
D_{8}	D_{9}	D_{10}	D_{11}
D_{12}	D_{13}	D_{14}	D_{15}

Modern ciphers - symmetric block ciphers - AES

Modern ciphers - symmetric block ciphers - modes

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- Counter Mode (CTR / xCM)

Electronic Codebook (ECB) mode encryption

Modern ciphers - symmetric block ciphers - modes

Modern ciphers - keys

- As we saw with Vigenére, a common word (or sentence) has to be known by both parties (sender and receiver).
- If plain text, cipher text and algorithm are known, the key should not* be deducible. (Kerckhoffs' Principle, 1883).
- Symmetric keys: $\mathrm{K}_{\mathrm{e}}=\mathrm{K}_{\mathrm{d}}$
- Asymmetric keys: $\mathrm{K}_{\mathrm{e}} \neq \mathrm{K}_{\mathrm{d}} \quad$ and K_{d} not deducible from K_{e}
* Or at least computational infeasible

Modern ciphers - key exchange (Diffie - Hellman)

- Common
- Add secret
- Result
- Add secret
- Result
- Alice

$+$
- Bob

$+$

$=$

$+$

$=$

$=$
$=$

Lame claim to fame: I had dinner with Whit Diffie (and Bruce Schneier and David Kahn and Jos Weyers) at Bletchley Park

Modern ciphers - asymmetric ciphers - RSA

- Published by Ron Rivest, Adi Shamir, Leonard Aldeman in 1977
- GCHQ's Clifford Cook was first in 1973, but it was classified
- Relies on the computationally intensive factoring of large prime numbers
- Easy to calculate

$$
\begin{aligned}
& (p-1) \cdot(q-1)=\varphi \\
& \varphi=(? ?-1) \cdot(? ?-1)
\end{aligned}
$$

- Hard to find

Modern ciphers - demo RSA

10 seconds of math - Greatest Common Divisor (GCD)

- Greatest Common Divisor is the greatest number that divides two numbers.
- $\operatorname{GCD}(8,18)=2$
- $\operatorname{GCD}(24,36)=12$
- $\operatorname{GCD}(21,36)=3$
- $\operatorname{GCD}(21,41)=1$ (because 41 is a prime number)

Modern ciphers - demo RSA 10 seconds math - modulus

- Substracting k times a number p from another number a as long as a number is positive, which leaves a remainder r. k is not important.

$$
a=r+k \cdot p \equiv a=r \bmod (p)
$$

- $118=58 \bmod (60)$

118 seconds $=1$ minute +58 sec.

- $15=1 \bmod (7)$

15 days $=2$ weeks +1 day

- $12345678901234567890=0 \bmod (10)$
- $264=18 \bmod (34)$

Modern ciphers - demo RSA

10 seconds math - Theorems of Fermat and Euler

- Take for a and p relative prime numbers so $\operatorname{GCD}(a, p)=1$ and $1<a<p$, then:

Fermat: $a^{p-1}=1 \bmod (p)$
Euler: $\quad a^{q(p)}=1 \bmod (p)$
$\varphi(p)=$ all positive numbers smaller than p that are relative prime with p if p is prime, then $\varphi(p)=p-1$

Modern ciphers - demo RSA Key setup

- Bob choses 2 primes p_{b} and q_{b} and calculates the products

$$
p_{\mathrm{b}} \cdot q_{\mathrm{b}}=n_{\mathrm{b}} \text { and } \varphi\left(n_{\mathrm{b}}\right)=\left(p_{\mathrm{b}}-1\right) \cdot\left(\mathrm{q}_{\mathrm{b}}-1\right)
$$

- Bob choses encryption exponent e that is relative prime to $\varphi\left(n_{b}\right)$
- Bob calculates decryption exponent d_{b} so $e_{\mathrm{b}} \cdot d_{\mathrm{b}}=1 \bmod \left(\varphi\left(n_{\mathrm{b}}\right)\right)$
- Bob publishes e_{b} and n_{b}, keeps d_{b} secret

Modern ciphers - demo RSA Message encryption

- Alice has a secret message m_{a}
- calculates $\left(m_{\mathrm{a}}\right) e_{\mathrm{b}}=c_{\mathrm{a}} \bmod \left(n_{\mathrm{b}}\right)$
- and passes $C_{\text {a }}$ to Bob

Modern ciphers - demo RSA

Message decryption

- Bob receives $C_{a^{\prime}}$
- calculates $\left(m_{\mathrm{a}}\right) d_{\mathrm{b}}=m_{\mathrm{a}} \bmod \left(n_{\mathrm{b}}\right)$
- and finds m_{a}

Proof:

$$
\begin{aligned}
\left(\left(m_{\mathrm{a}}\right)^{e \mathrm{~b}}\right)^{d_{\mathrm{b}}} & \equiv\left(m_{\mathrm{a}}\right)^{e_{\mathrm{b}} \cdot d_{\mathrm{b}}} \equiv\left(m_{\mathrm{a}}\right)^{1 \bmod \left(q\left(n_{b}\right)\right)} \equiv\left(m_{\mathrm{a}}\right)^{1+k \cdot q\left(n_{b}\right)} \\
& \equiv m_{\mathrm{a}} \cdot\left(m_{\mathrm{a}}\right)^{k \cdot q\left(n_{b}\right)} \equiv m_{\mathrm{a}} \cdot\left(\left(m_{\mathrm{a}}\right)^{\alpha\left(n_{b}\right)}\right)^{k} \equiv m_{\mathrm{a}} \cdot(1)^{k} \\
& \equiv m_{\mathrm{a}} \bmod \left(n_{\mathrm{b}}\right)
\end{aligned}
$$

Modern ciphers - demo RSA

Cryptanalysis

- Eve receives c_{a} and has knowledge of n_{b} and e_{b}
- Eve has to solve (??) $e_{\mathrm{b}}=c_{\mathrm{a}} \bmod \left(n_{\mathrm{b}}\right)$
- Take the e_{b}-th modular root of c_{a}

Modern ciphers - demo RSA

Cryptanalysis

- Take the e_{b}-th root of c_{a}

- Take the e_{b}-th modular root of c_{a}

Modern ciphers - demo RSA Key setup

- $p_{\mathrm{b}}=17$
- $q_{b} \quad=37$
- $n_{\mathrm{b}} \quad=p_{\mathrm{b}} \cdot q_{\mathrm{b}}=629$
- $\varphi\left(n_{\mathrm{b}}\right)=\left(p_{\mathrm{b}}-1\right) \cdot\left(q_{\mathrm{b}}-1\right)=(17-1) \cdot(37-1)=576$
- $e_{\mathrm{b}} \quad=41, \mathrm{GCD}(\mathrm{eb}, \mathrm{\square}(\mathrm{nb}))=1,1<e_{\mathrm{b}}<\varphi\left(n_{\mathrm{b}}\right)$
- $d_{\mathrm{b}} \quad=281$, (because $\left.41 \cdot 281=1 \bmod (576)\right)$

Modern ciphers - demo RSA Message encryption

- $m_{a} \quad=55$, this is the plain text
- $n_{\mathrm{b}} \quad=629$
- $e_{\mathrm{b}} \quad=41$
- Calculate $55^{41}=89 \bmod (629)$
- Send " 89 " to Bob

Modern ciphers - demo RSA Message decryption

- $m_{a} \quad=89$, this is the cipher
- $n_{\mathrm{b}}=629$
- $d_{\mathrm{b}}=281$
- Calculate $89^{281}=55 \bmod (629)$
- 55 was the secret message of Alice

Modern ciphers - demo RSA

Cryptanalysis

- $c_{a}=89$
- $n_{\mathrm{b}}=629$
- $e_{\mathrm{b}}=41$
- Calculate ?? ${ }^{41}=89 \bmod (629)$

Modern ciphers - asymmetric ciphers - ECC

- Walk around a "Weierstrass" curve of the shape $y^{2}=x^{3}+a x+b$ to reach a point (to be more precise $\left(\mathrm{y}^{2}-\mathrm{x}^{3}-a \mathrm{x}\right) \bmod p=0$, where p is the prime generating a finite field)
- Start with a public generator G (a point on the curve),
- walk the curve n times, publish the result
- abGp public key
- n private key

Modern ciphers - asymmetric ciphers - ECC

Modern ciphers - asymmetric ciphers - ECC

- How many times did you have to walk the curve to get to point nG? Very hard to calculate
- 256 bit ECC key is equivalent to 3072 bit RSA key (is equivalent to 128 bit AES)*

*read Arjen K. Lenstra's 2013 paper Universal security
from bits and mips to pools, lakes - and beyond

Modern ciphers - asymmetric ciphers - ECC

- Alice and Bob agree on a, b, G and p
- Alice generates $n_{\mathrm{a}} \cdot G=P_{\mathrm{a}}$ and shares P_{a}
- Bob generates $n_{\mathrm{b}} \cdot G=P_{\mathrm{b}}$ and shares P_{b}
- Alice calculates $n_{\mathrm{a}} \cdot P_{\mathrm{b}}=n_{\mathrm{a}} \cdot\left(n_{\mathrm{b}} \cdot G\right)=K$
- Bob calculates $n_{\mathrm{b}} \cdot P_{a}=n_{b} \cdot\left(n_{a} \cdot G\right)=K$
- Eve calculates $P_{\mathrm{a}} \cdot P_{\mathrm{b}}=$???

Modern ciphers - asymmetric ciphers - ECC

- NIST curves with prime fields 192, 224, 256, 384, 521 (NSA Suite B uses only 256 and 384) fast reduction, due to pseudo Mersenne primes like $p=2^{521}-1$
- NIST curves with binary fields 163, 233, 283, 409, 571 binary fields defined by $\mathrm{F}_{2}{ }^{\mathrm{m}}$
- Dual_EC_DRBG (determistic random bit generator) shenanigans
- SECG
- ECC BrainPool

Lame claim to fame: I had also dinner with him and Tanja Lange

- Curve25519 (Daniel J. Bernstein) $y^{2}=x^{3}+486662 x^{2}+x$ (a Montgomery curve) over the finite field generated by $p=2^{255}-19$

Modern ciphers - asymmetric ciphers - ECC

- Bitcoin secp256k1
- $p=2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1$
- $y^{2}=x^{3}+7$
- G is also defined

Future ciphers

Future ciphers

- Quantum computing
- Shor's algorithm
- Post-quantum cryptography

Future ciphers - quantum-breaking RSA

- $N=p \cdot q$ (eg. 55) (remember, this is very hard for large primes)
- Pick g so $\operatorname{GCD}(N, g)=1$ (eg. 4)
- At some point, $g^{r}=m \cdot N+1$

\boldsymbol{r}	\boldsymbol{g}^{r}		$\boldsymbol{g}^{r} / \boldsymbol{N}$	$\boldsymbol{g}^{r} \bmod \boldsymbol{N}$
1	4	0	4	
2	16	0	16	
3	64	1	9	
4	256	4	36	
5	1024	18	34	
6	4096	74	26	
7	16384	297	49	
8	65536	1191	31	
9	262144	4766	14	
10	1048576	19065	1	

Future ciphers - quantum-breaking RSA

- $r=10$
- $g^{r}=m \cdot N+1$-> $g^{r}-1=m \cdot N$-> $\left(g^{r / 2}+1\right)\left(g^{r / 2}-1\right)=m \cdot N$

$$
\begin{array}{lll}
\left(g^{r / 2}+1\right)=4^{5}+1=1025 & G C D(1025,55)=5 & \text { (via Euclid's algorithm) } \\
\left(g^{r / 2}-1\right)=4^{5}-1=1023 & G C D(1023,55)=11 &
\end{array}
$$

Future ciphers - quantum-breaking RSA

\boldsymbol{r}	\boldsymbol{g}^{r}		$\boldsymbol{g}^{r} / \boldsymbol{N}$
1	4	$\boldsymbol{g}^{r} \bmod \boldsymbol{N}$	
2	16	0	4
3	64	0	16
4	256	1	9
5	1024	4	36
6	4096	78	34
7	16384	297	26
8	65536	1191	49
9	262144	4766	31
10	1048576	19065	14

\boldsymbol{r}	\boldsymbol{g}^{r}	$\boldsymbol{g}^{r} / \boldsymbol{N}$	$\boldsymbol{g}^{r} \bmod \boldsymbol{N}$
11	4194304	76260	4
12	16777216	305040	16
13	67108864	1220161	9
14	$2.68 \mathrm{E}+08$	4880644	36
15	$1.07 \mathrm{E}+09$	19522578	34
16	$4.29 \mathrm{E}+09$	78090314	26
17	$1.72 \mathrm{E}+10$	$3.12 \mathrm{E}+08$	49
18	$6.87 \mathrm{E}+10$	$1.25 \mathrm{E}+09$	31
19	$2.75 \mathrm{E}+11$	$5 \mathrm{E}+09$	14
20	$1.1 \mathrm{E}+12$	$2 \mathrm{E}+10$	1

- Periodic sequence (and $g^{0}=m \cdot N+1=1 \bmod N$)

Future ciphers - quantum-breaking RSA

- Periodic sequence -> Use Fourier transform to find periodicity

Future ciphers - quantum-breaking RSA

- Finding periodicity (Quantum - Fast Fourier Transform)
- Factoring large numbers into prime numbers very easy (with enough qbits)
- Key exchanges no longer secret when key exchange is recorded and stored
- Cross-over point (publicly available qbits vs required qbits) somewhere in 2035...
- Symmetrical ciphers are still fine-ish

Future ciphers - Lattice-based cryptography

- Like DES and AES, NIST launched a quantum-safe algorithm competition
- 5 July 2022, 4 algorithms selected for further evaluation, 3 are lattice-based
- A lattice is a repeating grid of points in n dimensions
- Security is based on the shortest vector problem
- Any resemblance with lettuce is purely coincidental

Future ciphers - Lattice-based cryptography

- Generate a lattice with simple vectors and very hard vectors
- Publish very hard vectors, keeps simple vectors secret

- In 1000+ dimensions

Future ciphers - Lattice-based cryptography

- Pick a point close to (but not on) a latticepoint that you want to share

Future ciphers - Lattice-based cryptography

- Easy to find the closest lattice point with the easy vectors

Future ciphers - Lattice-based cryptography

- Very hard (also for quantum computers) to find the closest lattice point with any other vectors.

Questions?...

Questions?...

- Web
- https://wikipedia.org
- https://cryptii.com
- https://www.coursera.org/learn/crypto
- Books
- Applied Cryptography, Bruce Schneier
- The Codebreakers, David Kahn
- Cryptonomicon, Neal Stephenson

